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As documented by the numerous publications that have appeared in recent years, plastic

pollution of the environment and the effects on the respective ecosystems are currently

one of the most intensely discussed issues in environmental science and in society

at large. Of special concern are the effects of micro- and nano-sized plastics. A key

issue in understanding the fate and potential effects of micro- and nano-sized plastics

is their dynamic nature, as the size, shape, and charge of the particles change over

time. Moreover, due to various biological processes, such as the aggregation of organic

material and/or bacteria (“biofouling”), the density of plastic particles that settle in the

sediments of aquatic ecosystems may be several orders of magnitudes higher than that

in the surrounding waters. Consequently, the risk posed by plastic pollution to benthic

fauna is considerably high. Nonetheless, the vast majority of studies examining the effects

of microplastics have focused on pelagic organisms so far. We therefore conducted a

comprehensive literature review to examine the impact of micro- and nano-sized plastics

on benthic invertebrates, including the physical and chemical effects of leaching and the

interactions of plastic particles with contaminants. Overall, 330 papers were reviewed

for their fulfillment of different criteria (e.g., test species, plastic material, particle shape,

particle size, exposure concentration, exposure route, assay type, assay duration), with

49 publications finally included in our survey. A comprehensive gap-analysis on the effects

of plastic particles on benthic invertebrates revealed a wide variety of effects triggered

by micro- and/or nano-sized plastics but also distinct differences regarding the plastic

materials tested, the size fractions applied, the shape of the respective particles, and

the exposure routes tested. Our review concludes with a discussion of the important

research gaps concerning freshwater ecosystems and recommendations for future areas

of research.
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INTRODUCTION

The pollution of aquatic ecosystems with plastic debris is
regarded as one of the most serious environmental issues
worldwide. Among this debris, small-sized particles have
received increasing attention and are recently of particular
concern (e.g., Thompson et al., 2004; Eerkes-Medrano et al.,
2015; Rochman et al., 2016). These particles, termed nano- and
microplastics, are generally defined by their largest dimensions of
0.001–0.1µm and 0.1 µm−5mm, respectively (e.g., Thompson
et al., 2004; Moore, 2008) and are both major contributors to
plastic pollution in marine as well as freshwater ecosystems (e.g.,
Thompson et al., 2004; Cole and Galloway, 2015; Chae and An,
2017). Generally, tiny particles could either be manufactured
directly for various consumer and industrial applications, serving
as primary sources of these particles, or could be derived from
the fragmentation of larger plastic particles (e.g., Andrady, 2011;
Browne et al., 2011).

An understanding of the environmental fate of small-scale
plastic particles is fundamental for the assessment of their
potential risks, but this is complicated by the fact that the
size, shape, density, and charge of the particles constantly
change over time (Galloway et al., 2017). Generally, several
plastics, such as Polystyrene (PS), Polyvinylchloride (PVC), or
Polyethylene terephthalate (PET), have a specific gravity higher
than water, resulting in increased settling rates of these plastic
classes in sediments, while plastics with lower densities, such
as Low-density polyethylene (LDPE), High-density polyethylene
(HDPE), or Polypropylene (PP), are suspected to mainly float
in the water column (e.g., Duis and Coors, 2016; Auta et al.,
2017). However, due to various biological processes, such as the
aggregation of organic material and/or bacteria (“biofouling”),
the gravity of plastic particles might become greater, by which
their potential to settle in the sediments of aquatic ecosystems
is increasing (e.g., Andrady, 2011; Galloway et al., 2017).
Subsequently, densities of plastic particles in sediments can
become magnitudes higher than in the surrounding waters
(Lattin et al., 2004). These processes increase the bioavailability
of nano- and microplastics for sediment-inhabiting organisms,
especially via ingestion, since the particles are of roughly the
same size (or even smaller) as sediment grains (Moore, 2008;
Wright et al., 2013a). The ingestion of plastic debris by sediment-
dwelling organisms has already been frequently reported and is
reviewed elsewhere (e.g., Ivar do Sul and Costa, 2014; Li W.
C. et al., 2016; Scherer et al., 2017). Benthic invertebrates are
of particular concern, either in marine or freshwater habitats,
since they contribute up to 90% of fish prey biomass (e.g.,
Schindler and Scheuerell, 2002; Weber and Traunspurger, 2015).
Hence, for benthic fauna, small-scale plastics may impact trophic
energy transfer and/or trophic interactions. However, the vast
majority of studies examining the ecotoxicological effects of
nano- and microplastics have focused on pelagic rather than
benthic organisms so far.

Direct harmful effects of nano- and microplastics may
be of physical (mechanical) and/or chemical (toxicological)
nature (Barnes et al., 2009; Wright et al., 2013b). The
latter include the leaching from plastics of e.g., carcinogenic

and endocrine-disrupting contaminants, such as monomers,
plastic additives (e.g., Oehlmann et al., 2009; Talsness et al.,
2009), and polymer-associated chemicals. In addition, due to
their large surface area to volume ratio, small-scale plastic
particles can become heavily contaminated, with particle-
associated concentrations of the contaminants being several
orders of magnitude greater than those in the ambient medium
(Mato et al., 2001; Hirai et al., 2011). Among the pollutants
with the highest affinity for the hydrophobic surface of
plastics are hydrophobic persistent organic pollutants (POPs).
After the contaminated particles are ingested by benthic
organisms, the possible leaching of associated POPs could
result in the bioaccumulation and biomagnification of these
chemicals followed by their entry into aquatic food webs
(vom Saal et al., 2008).

In this review we assess current knowledge on the effects
of nano- and microplastics on benthic invertebrates in aquatic
ecosystems. Our assessment is based on a literature analysis
of: (i) the impacts on organisms in freshwater and marine
environments, (ii) the harmful effects induced by the physical
or chemical impacts of plastic particles, (iii) the various particle
materials, shapes, and sizes examined, (iv) the exposure matrix
and parameters assessed in the respective assays and (v)
the interaction of contaminants with nano- and microplastic
particles. Subsequently, a gap analysis based on the obtained
findings was conducted and areas in need of further research
were identified.

METHODS

Using the databases Web of Science and Google Scholar, a
comprehensive literature review of the physical and chemical
effects of leaching processes as well as the interaction of plastic
particles with contaminants in terms of their impacts on benthic
invertebrates was conducted. The search was based on a query
of the key word terms: microplastic∗ OR nanoplastic∗ AND
benthic∗ OR benthos∗ AND invertebrate∗ AND effect∗ OR
impact∗ or a combination thereof.

Overall, 330 papers were reviewed, with 49 publications finally
included in this survey based upon their relevance to the topic, in
agreement with general criteria for peer-reviewed articles and as
judged by the authors of this review. Although a comprehensive
literature search was carried out, the retrieved studies may not be
fully representative of all studies conducted, since the probability
that a given study will be published generally increases with
the increased statistical significance of its results. This “file
drawer problem” was described by Arnqvist andWooster (1995).
However, for consistency, unpublished results were excluded,
with only primary literature reports included in the final review
process. Additional validity criteria fulfilled by the included
publications were distinct characterizations of the respective
plastic material as well as the provision of quality criteria in
terms of positive and negative controls. Within the selected
publications, investigations of two or more different organisms
or particles with various characteristics in terms of, e.g., particle
material or shape were considered as separate experiments.
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FIGURE 1 | Schematic representation of the review process, publication selection and data analysis.

The publications were categorized according to the
investigated habitat (freshwater or marine) and the impact
(physical or chemical) on the benthic invertebrates assessed. For
each publication, the following criteria were analyzed: taxon,
species, plastic material, particle shape, particle size, exposure
concentration, and matrix endpoints investigated. The general
review procedure and the effects identified in those studies are
summarized in Figure 1.

RESULTS

Physical Impacts
Freshwater Benthic Fauna

The mechanical hazards posed by the ingestion of micro-
and nano-sized plastic particles by organisms in freshwater
ecosystems were evaluated in 26 experiments reported in 10
publications (Table 1). The most frequently used organisms
(38%, n = 10) were arthropods, mainly crustaceans (Figure 2A).
The gammarids Gammarus fossarum, Gammarus pulex, and
Hyalella azteca were the target in 8 out of the 26 experiments
(Table 1), and molluscs and nematodes in 7 (27%) and 6 (23%)
of the experiments (Table 1; Figure 2A). By contrast, very little
research focused on the physical effects of plastics on annelids
(n = 2, 8%) and rotifers (n = 1, 4%; Figure 2A). The former
were limited to the effects on Lumbriculus variegatus and Tubifex
spp., and the latter to those on the rotifer species Brachionus
koreanus (Table 1).

Among the 26 experiments examining themechanical hazards
posed by micro- and nano-sized plastics on benthic organisms in
freshwater, 46% (n = 12) focused on polystyrene (PS) particles,
23% (n = 3) on polyamide (PA), 23% (n = 3) on polyethylene
(PE), 15% (n =2) on polyvinyl chloride (PVC), and 15%
(n= 2) on polypropylene particles (PP; Figure 2B). The effects of
polymethyl methacrylate (PMMA), polyhydroxybutyrate (PHB),
polycarbonate (PC), and polyethylene terephthalate (PET) were
investigated in single studies (4% each). The vast majority (69%,
n = 18) of the freshwater investigations examined the physical
effects of microplastic fragments, i.e., non-uniform, irregularly
shaped particles, and powders (Figure 2C). In 23% (n = 6;
Figure 2C) the effects of spheres, i.e., micro- and/or nano-sized
beads, were determined. Two studies (8%) assessed the physical
effects of polymer fibers (Figure 2C). Generally, the effects of
micro-sized plastic particles (0.1–5,000µm) were investigated,

whereas the toxicity of nano-sized particles (<0.1µm) was rarely
tested (Table 1).

As shown in Figure 2D, in most of the studies on the
mechanical hazards of microplastics (54%, n = 14) aqueous
medium (AM) was the matrix used to apply the investigated
plastic particles, followed by plastic spiked sediments (27%,
n= 7) and of food (8%, n= 5).

Mortality
Lethal effects of nano- and micro-sized plastics were investigated
in 81% (n = 21) of the studies as displayed in Table 1. Redondo-
Hasselerharm et al. (2018) investigated the lethal effects of various
PS-fragments in sediments on the annelids L. variegatus and
Tubifex spp., the arthropods Asellus aquaticus, G. pulex, and
H. azteca and themollusc Sphaerium corneum, without observing
lethal effects on any test organism (Table 1). Similar results were
reported by Blarer and Burkhardt-Holm (2016) and Imhof and
Laforsch (2016), who neither found significant lethal effects on
G. fossarum nor on the mud snail Potamopyrgus antipodarum
exposed to a variety of polymer fragments (PA, PC, PET, PS,
PVC) offered in different shapes, concentrations, and sizes
(Table 1). However, Ziajahromi et al. (2018) and Lei et al. (2018)
reported significantly increased mortality rates for Chironumus
tepperi and Caenorhabditis elegans when exposed to PE- and
PS-spheres varying in size and concentration respectively, with
effects being distinctly size-dependent (Table 1). In terms of
investigated effects of plastic fragments and fibers, impacts
were reported to be rather dose-dependent as observed for
PE-fragments and PP-fibers on H. azteca (Au et al., 2015;
Table 1) and for PA-, PP-, PE-, and PVC-fragments on C. elegans
(Lei et al., 2018; Table 1).

Development
The effects of small-scale plastics on the development of
organisms were investigatedmost frequently, by being of concern
in 88% (n = 23) of the respective studies. As reported by
Redondo-Hasselerharm et al. (2018), effects of PS-fragments on
the development were species-specific, with no significant effects
reported for L. variegatus, Tubifex spp., A. aquaticus, H. azteca,
and S. corneum, while the growth of G. pulex was significantly
affected (Table 1). In the study of Blarer and Burkhardt-Holm
(2016), neither PS-spheres nor PA-fibers had significant effects on
the development of G. fossarum, while exposure to PMMA- and
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FIGURE 2 | Toxicity assays examining physical effects in organisms in (i) freshwater studies, (ii) marine studies and (iii) total. Data depict the groups of organisms (taxa)

used (A), polymer types (B), shape of small-scale plastic particles (C), and matrix or route of exposure (D).

PHB-fragments in various size-ranges significantly decreased the
wet weight of this species (Straub et al., 2017; Table 1). Among
the studies focusing on freshwater arthropods, size-dependent
effects were reported for PE-spheres again (Ziajahromi et al.,
2018), with significantly reduced and delayed development of
C. tepperi induced by small particles (Table 1). Effects in a
dose-dependent manner were observed by Au et al. (2015),
reporting impacts on dry weight of H. azteca when exposed to
PE-fragments and PP-fibers in various concentrations (Table 1).
However, PA-, PC-, PET-, PS-, and PVC-fragments included in
food did not induce any significant effects on the development
of P. antipodarum (Imhof and Laforsch, 2016; Table 1), while
PA-, PP-, PE-, and PVC-fragments significantly reduced the
body length of C. elegans (Lei et al., 2018). The latter study
also showed equivalent reductions in the growth of this
nematode species by the application of different PS-spheres
(Lei et al., 2018; Table 1).

Reproduction
The effects on reproduction were investigated in 50% (n = 13;
Table 1) of the analyzed experiments. Significant dose-dependent
effects of plastic particles were reported by Au et al. (2015),
investigating the impact of PE-particles on the reproduction
of H. azteca, and by Zhao et al. (2017), observing dose-
depending reductions in brood sizes of C. elegans treated with
PS-spheres (Table 1). Additionally, effects were also reported

to be size-dependent on C. elegans, as shown by Lei et al.
(2018), who reported significant inhibitory effects of smallest
PS-spheres applied (Table 1). Comparable size- and dose-
dependent effects were also reported for B. koreanus, with
a significant prolongation of its reproduction time and a
reduced fecundity after exposure to PS nanoparticles (Jeong
et al., 2016; Table 1). Additionally, plastic fragments of various
origins (PA, PP, PE, and PVC) significantly reduced reproductive
success of C. elegans, while only PE- and PVC-fragments
affected brood sizes significantly (Lei et al., 2018; Table 1).
However, fragments of PA, PC, PET, PS, and PVC had
no apparent impact on the reproduction of P. antipodarum
(Imhof and Laforsch, 2016; Table 1).

Behavior
Behavioral alterations induced by small-scale plastic particles
were investigated in 11 assays, being tantamount with 42% of
the experiments described in the included studies (Table 1).
No alterations in feeding behavior were observed following
the exposure of L. variegatus, Tubifex spp., A. aquaticus,
G. pulex, H. azteca, or S. corneum to PS-fragments (Redondo-
Hasselerharm et al., 2018), or G. fossarum to PS-spheres (Blarer
and Burkhardt-Holm, 2016). Additionally, neither effects of PA-
fibers nor of PMMA- or PHB-fragments on G. fossarum could
be observed (Blarer and Burkhardt-Holm, 2016; Straub et al.,
2017). By contrast, nano-sized PS-spheres significantly reduced
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the locomotion of C. elegans in a dose-dependent manner (Zhao
et al., 2017; Table 1).

Cellular response
Cellular responses, including alterations in gene expression,
reactive oxygen species (ROS) production, and enzyme
activity, were the assessed end points of 31% (n = 8) of
the studies (Table 1). Effects of different PS-spheres at
various concentrations on the mussel D. polymorpha were
investigated by Magni et al. (2018), analyzing various biomarkers
(Table 1). While neither biomarkers of oxidative damage,
neuro-genotoxicity, the activities of neuro-enzymes nor the
measured frequency of micronuclei were affected, enzyme
activity of catalase (CAT), glutathione peroxidase (GPx), as
well as measured dopamine levels were significantly altered in
treated organisms (Magni et al., 2018; Table 1). The assessed
biomarkers of C. elegans showed to be material-dependent with a
significant up-regulation of glutathione-S-transferase (GST) after
exposure to PE-, PP-, and PVC-fragments, while PA-fragments
had no effect, and significantly altered intestinal calcium levels
observed in C. elegans exposed to PA-, PE-, and PVC-fragments
exclusively (Lei et al., 2018; Table 1). The presence of PS-spheres
in various sizes could be shown to induce a general significant
up-regulation of GST additionally, whereas measured calcium
levels were affected in a size-dependent manner (Lei et al.,
2018; Table 1). This size-dependent toxicity of PS-spheres on
several cellular biomarkers was also reported by Jeong et al.
(2016) for B. koreanus. While the levels of intracellular ROS
were generally higher in treated rotifers, size-dependencies were
reported for glutathione reductase (GR), superoxide dismutase
(SOD), GPx, GST, and the phosphorylation status of mitogen-
activated protein kinase (MAPK) signaling proteins with
significant effects after the exposure to smallest spheres applied
(Jeong et al., 2016; Table 1).

Others
The parameters assimilation efficiency (n = 4), life-span (n = 1),
and emergence (n = 1) were assessed in 23% of the respective
experiments together. Studies by Blarer and Burkhardt-Holm
(2016) and Straub et al. (2017) on the assimilation efficiency
of G. fossarum revealed significant effects induced by PA-fibers
and PMMA-fragments, while PS-spheres and PHB-fragments did
not show any effects (Table 1). Regarding the parameter life-
span, B. koreanus revealed size- and dose-dependent impacts
of PS-spheres at various concentrations, with life-span being
significantly shortened by the smallest spheres applied (Jeong
et al., 2016; Table 1). However, no dependencies in terms of
effects could be shown regarding the emergence of C. riparius,
being equally lowered by the presence of PE-spheres of various
sizes (Ziajahromi et al., 2018).

Marine Benthic Fauna

Mechanically induced effects have also been investigated
frequently in marine settings, with 50 studies being included in
the review process. Organisms belonging to Mollusca were most
commonly used (36%, n = 18; Figure 2A), especially those of
the Mytilus complex (mostly M. edulis and M. galloprovincialis),

followed by the flat oyster Ostrea edulis and the Pacific
oyster Crassostrea gigas, and, in only one study, Atactodea
striata (Table 2). Arthropods (34%, n = 17; Figure 2A)
were another common target organism, with crustaceans
investigated exclusively. These consisted mostly of several
decapods, including Carcinus maenas and Palaemonetes pugio,
the calanoid species Calanus finmarchicus and C. helgolandicus,
as well as Centropages typicus and Parvocalanus crassirostris
(13%, n = 3), but also the isopod Idotea emarginata (6%, n = 1)
and the cyclopoid species Paracyclopina nana and Tigriopus
japonicas (6%, n = 1), as shown in Table 2. Other targets
were annelids (14%, n = 7), mostly Arenicola marina, but also
Perinereis aibuhitensis and the ragworm Hediste diversicolor.
Beside, Echinodermata were investigated frequently (12%, n= 6),
mostly Paracentrotus lividus and the sea urchin Tripneustes
gratilla (83%, n = 5; Table 2, Figure 2A). Single studies were
conducted on the ascidian Ciona robusta and the marine rotifer
Brachionus manjavacas (Table 2).

Most studies of marine benthic organisms investigated PS
exposure, including 10 experiments assessing the mechanical
impact of functionalized PS-particles PS-COOH (4%, n = 2)
and PS-NH2H (8%, n = 4; Figure 2B; Table 2). PE, specifically,
High-density polyethylene (HDPE) particles, was the seconds
most frequently tested plastic (12%, n = 6), followed by PVC,
PP, and PE (6%, n = 3 each), biodegradable polyactic acid (PLA,
8%), and PA and PET (4% each; Figure 2B; Table 2). In 56%
(n = 28) of the marine studies, the studied plastic particles
were applied as spheres (Figure 2C and Table 2), with fragments
contributing 38% (n = 19; Figure 2C) and polymer fibers 6%
(n= 3; Figure 2C).

The main application route was via aqueous medium (70%,
n = 35; Figure 2D), while effects of plastic particles applied in
sediment and in spiked food were analyzed in only 12% (n = 6)
and 18% (n= 9) of the studies, respectively (Figure 2D).

Mortality
Lethal effects were examined in 56% (n = 28; Table 2) of the
relevant experiments, by this being the most frequently assessed
parameter among the included marine studies. With regard to
the model organism A. marina, no effects on mortality could
be observed when treated with a variety of microplastics in
sediments, including PVC-, PLA-, and HDPE-fragments (Green
et al., 2016b; Table 2) as well as PS-spheres (Besseling et al., 2012;
Table 2). Even if no effects on mortality could be determined
for H. diversicolor exposed to PVC-fragments (Gomiero et al.,
2018), Leung and Chan (2018) reported significantly increased
mortality of another marine annelid, P. aibuhitensis, by small
PS-spheres in a size-depending manner (Table 2). This size-
dependency was supported by Lee et al. (2013), reporting
significantly increased mortality rates of two generations of
T. japonicus when treated with PS-spheres in various sizes
(Table 2). However, the mortality rates of other copepod species
(C. finmarchicus and C. helgolandicus) were not affected when
PS-spheres where applied (Cole et al., 2015; Vroom et al., 2017;
Table 2). The same results were obtained by Watts et al. (2016),
reporting no effects of PS-spheres on the decapod C. maenas,
neither of functionalized nor of non-functionalized particles
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(Table 2). Additionally, mortality of I. emarginata was also
unaffected by PS-spheres, PS-fragments and PA-fibers (Hämer
et al., 2014; Table 2). By contrast, Gray and Weinstein (2017)
reported increased mortality rates of P. pugio treated with PE-
and PS-spheres, PP-fragments, and PP-fibers (Table 2). PP-fibers
generally induced significantly increased mortality, while the
PE-spheres, PS-spheres, and the PP-fragments affected mortality
rates in a size-dependent manner with larger particles being
responsible for significant effects exclusively (Table 2). Lethal
effects of PS- and PE-spheres were also assessed in Ciona
robusta (Chordata; Messinetti et al., 2018), Paracentrotus lividus
(Echinodermata; Messinetti et al., 2018) and Tripneustus gratille
(Echinodermata; Kaposi et al., 2014; Table 2), with no effects
being observed. Among the investigated marine molluscs, no
lethal effects induced by a variety of plastic particles could
be found (Table 2). Investigations on the lethality of HDPE-
fragments in the bluemusselM. edulis and the flat oysterO. edulis
failed to show any effects (von Moos et al., 2012; Green et al.,
2016a; Table 2), which was also the case regarding O. edulis
treated with biodegradable PLA-fragments (Green et al., 2016a).
For M. galloprovincialis, neither PS- nor PE-fragments induced
mortality as reported by Avio et al. (2015; Table 2).

Development
Effects on the development of benthic organisms in marine
environments were examined in 46% of the studies (n = 23),
as summarized in Table 2. While PVC-, PLA-, and HDPE-
fragments did not induce any negative effects on the development
of A. marina (Green et al., 2016b; Table 2), Besseling et al.
(2012) reported significant effects on A. marina in terms of dry
weight (dw) loss in a dose-dependent manner when exposed to
PS-spheres (Table 2). These findings are in line with negative
effects induced by PS-spheres on C. helgolandicus (Cole et al.,
2015; Table 2). However, neither PS- nor PA-particles of various
sized and shapes affected I. emarginata as reported by Hämer
et al. (2014; Table 2). Additionally, effects of PS-spheres have
further been reported to be size-dependent as indicated for
the intergenerational developmental responses of T. japonicas
(Lee et al., 2013) and development time of P. nana (Jeong
et al., 2017), with both parameters being affected by nano-
sized spheres exclusively (Table 2). However, studies examining
the impact of small-scale plastics on echinoderms reported
significant dose-dependent effects for a variety of applied
particles, such as PS-spheres on T. gratilla (Kaposi et al., 2014),
and significantly affected development of P. lividus exposed to
plain PS-spheres (Martínez-Gómez et al., 2017; Messinetti et al.,
2018), nanospheres of functionalized PS particles (PS-NH2; Della
Torre et al., 2014) and HDPE-fragments (Martínez-Gómez et al.,
2017). In terms of PS-spheres, comparable results were reported
for the ascidian C. robusta, with a significant delay in juvenile
development but no effects on larvae (Messinetti et al., 2018;
Table 2). The impacts of micro- and nanoplastics on molluscan
development were examined in C. gigas, M. galloprovincialis,
and O. edulis (Table 2). While no effects were reported for
C. gigas in a short-term experiment (Cole and Galloway, 2015),
enhanced exposure time led to various significantly development
parameters (Sussarellu et al., 2016). In terms of M. edulis

and M. galloprovincialis, significant effects in a dose-dependent
manner were reported for functionalized and non-functionalized
PS-spheres (Paul-Pont et al., 2016; Balbi et al., 2017; Table 2),
whereas shell growth of O. edulis was neither affected by HDPE-
nor PLA-fragments (Green, 2016; Table 2).

Behavior
Behavioral alterations of benthic marine organisms due to nano-
and micro-sized plastics were assessed in 46% of the studies
(n = 23; Table 2). Studies of potential behavioral alterations
induced by plastic particles included an examination of the effects
on the bioturbation activity of A. marina exposed to PVC-,
PLA- and HDPE-fragments (Green et al., 2016b). However, after
1 month, only the PVC-fragments had induced a reduction in
behavior of A. marina, with no effects were observed for any of
the other tested polymers (Table 2; Green, 2016). Most of the
studies concerning behavioral alterations induced by small-scale
plastic particles measured the feeding rate of the test organisms
(Table 2). This was the case in studies conducted by Besseling
et al. (2012) and Wright et al. (2013a) on the effects of PS-
spheres and PVC-fragments in A. marina respectively, with
feeding activity being reported to be affected dose-dependently
(Table 2). Comparable results were measured for the arthropods
C. helgolandicus (Cole et al., 2015) and C. typicus (Cole et al.,
2013) respectively, with reduced feeding activities in a dose-
dependent manner after exposure to PS-spheres (Table 2).
Likewise, dose-dependent effects were also reported regarding
the feeding rates of A. striata when treated with PS-spheres
(Xu et al., 2017), as well as for PLA- and HDPE-fragments on
M. edulis respectively (Green et al., 2016b; Table 2). However,
neither PS-fragments or PA-fibers did impact the feeding rates
of I. emarginata (Hämer et al., 2014; Table 2), nor did PS-
spheres induce behavioral effects on M. edulis (Browne et al.,
2008; Table 2). Similarly, Cole and Galloway (2015) did not find
any significant effects of PS-spheres on the feeding activity of
C. gigas in a short-term experiment, whereas Sussarellu et al.
(2016) reported significantly higher algal consumption by oysters
exposed for extended periods of time (Table 2). Dose-dependent
variations in the impacts of plastic particles on the feeding
behavior ofO. eduliswere reported by Green et al. (2016a,b), with
HDPE- and PLA-fragments significantly enhancing feeding rates
of mussels at particular concentrations exclusively (Table 2).
Exposed to PS-spheres, size dependency was reported for the
feeding activity of the rotifer B. manjavacas (Snell and Hicks,
2011), with effects being observed for the smallest particles
only (Table 2).

Egestion
Closely linked to changes in feeding behavior are changes
in egestion, being assessed in two experiments (2%; Table 2).
Dose-dependent effects of PVC-fragments on the gut residence
time of food in A. marina were reported by Wright et al.
(2013a; Table 2), while the presence of nano-sized PS-spheres
generally increased the production of pseudofeces in M. edulis
(Wegner et al., 2012; Table 2).

Frontiers in Environmental Science | www.frontiersin.org 20 February 2019 | Volume 7 | Article 17

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Haegerbaeumer et al. Effects of Micro- and Nanoplastics on Benthic Invertebrates

Cellular response
The cellular responses of marine organisms to small-scale
plastics were assessed in 36% (n = 18) of the studies (Table 2).
PVC-fragments induced significantly increased phagocytic
activity of immune cells in A. marina after chronic exposure,
which was also the case for H. diversicolor as the proportions
of phagocytic cells among coelomic fluid cells increased
significantly in worms exposed to PVC particles (Gomiero et al.,
2018). Heindler et al. (2017) examined the cellular responses of
the arthropod P. crassirostris to PET-fragments with Histone
3 (H3) gene expression was significantly down regulated after
6 days but significant alterations were no longer detected after
18 days of recovery (Table 2). Additionally, Hsp7p0-like gene
expression was not affected neither after 6 days of exposure nor
at the end of the recovery phase (Heindler et al., 2017). Jeong
et al. (2017) examined the molecular responses of the marine
arthropod P. nana in terms of the activation of mitogen-activated
protein kinase (MAPK), p38 and nuclear factor erythroid 2-
related factor 2 (Nrf2), ROS levels, and the activities of the
antioxidant enzymes GPx, glutathione reductase (GR), GST, and
SOD. For ROS levels, phosphorylation of the MAPK protein
extracellular signal-regulated kinase (p-ERK) as well as p38
and Nrf2, significant size-depending alterations were reported
with smallest spheres inducing significant increases (Table 2).
Additionally, size-dependencies were analyzed in antioxidant
enzymes, with GPx activity was significantly enhanced in P. nana
exposed to smallest PS-spheres exclusively, while the activities
of GPx, GR, GST, and SOD were generally up regulated after
plastic exposure of the copepod (Table 2). By contrast, there was
no difference in the phosphorylation status of phosphorylated
c-Jun N-terminal kinase (Jeong et al., 2017). Watts et al. (2016)
also examined the impact of PS, exposing the crab C. maenas
to non-functionalized and functionalized (PS, PS-COOH,
and PS-NH2) spheres. Exposure to neutrally charged spheres
resulted in significant effects on several hemolymph constituents
and significantly reduced hemocyanin concentrations in a
dose-dependent manner, while protein concentrations in the
hemolymph of the crabs remained unchanged (Table 2). Overall,
the exposure of C. maenas to carboxyl- or amino-coated
plastics had no significant effect on any assessed parameters
(Table 2; Watts et al., 2016). The impact of functionalized
spheres was also assessed by Della Torre et al. (2014), who
treated P. lividus with nanoparticles of PS-COOH and PS-NH2

(Table 2). PS-COOH spheres significantly up-regulated Abcb1
gene expression, whereas exposure to the amino-coated spheres
induced an up-regulation of cas-8. No other effects on further
analyzed stress genes (14-3-3ε, Abcc5, cas8, and p-38 MAPK)
were observed (Table 2). Sussarellu et al. (2016) investigated the
effects of PS-spheres on the mollusc C. gigas by analyzing its
hyalinocyte and granulocyte sizes. Both hemocyte types were
significantly larger in exposed organisms and the oxidative
activity of these cells was altered (Table 2). Additionally,
transcriptomic and proteomic analyses revealed further plastic-
induced effects on C. gigas: within digestive glands, two clusters
of transcripts exhibited similar expression patterns (up and
down regulated), with glucocorticoid stimulus, fatty acid
catabolic processes, respiratory burst, and cellular response to

mechanical stimulus as the main significantly enriched Gene
Ontology (GO) biological processes (Sussarellu et al., 2016).
In gonads, the expression of transcripts related to glutamine
biosynthetic processes, the positive regulation of insulin
secretion and of epithelial cell proliferation, and ovarian follicle
cell–cell adhesion were among the significantly enriched GO
biological processes (Sussarellu et al., 2016). In the transcript of
oocytes, the significantly enriched GO biological processes were
proteolysis, embryo development, and ion binding. In addition,
two abundant protein spots, identified as arginine kinase, were
detected in the proteome. The expression of this enzyme was
significantly lower in exposed oysters, while the expression
of the protein severin was higher in their oocytes (Sussarellu
et al., 2016). Regarding effects of irregularly shaped HDPE-
fragments on the blue mussel M. edulis, von Moos et al. (2012)
reported a significant increase in granulocytoma formation
and a significantly decreased destabilization time of lysosomes,
while no effects on biomarkers of oxyradical damage (lipofuscin
accumulation) or on neutral lipid content could be found
(Table 2). No effects on the oxidative status of the hemolymph
or in hemocyte viability and phagocytic activity were measured
by Browne et al. (2008), analyzing M. edulis treated with PS-
spheres. However, Paul-Pont et al. (2016) exposed organisms
from the Mytilus-complex (M. edulis and M. galloprovincialis)
to PS-spheres and reported the percentage of dead hemocytes,
ROS production and the activity of anti-oxidant enzyme, CAT,
and lipid peroxidation (LPO), being significantly affected, while
phagocytosis as well as hemocyte and granulocyte concentrations
have been unaffected (Table 2). In terms of gene expression,
only gill mRNA levels changed significantly in response to
the PS-spheres, specifically, lys levels were enhanced and cat
levels significantly reduced (Table 2). After depuration, both the
percentage of dead hemocytes and phagocytosis capacity were
significantly higher; granulocyte concentrations and hemocyte
counts were significantly lower, GST, and SOD activities were
significantly increased, and LPO activity significantly decreased
in exposed vs. control mussels. By contrast, after depuration
there were no effects on phagocytosis activity, ROS production,
and hyalinocyte concentration (Table 2). Expression of the genes
sod and pk in the gills of the mussels was increased, whereas
that of the genes cat and pgp was significantly decreased in
the gills and digestive glands, respectively (Table 2). Using
M. galloprovincialis as the target organism, impacts of amino-
coated (PS-NH2) nano-sized particles were assessed by Canesi
et al. (2015) and Balbi et al. (2017). Hemocyte functional
parameters (lysosomal membrane stability, lysosomal enzyme
release, phagocytosis, ROS, and nitric oxide (NO) production)
and apoptotic parameters (mitochondrial membrane potential
and cardiolipin peroxidation) were evaluated by Canesi
et al. (2015), with significant dose-dependent decreases
measured in lysosomal membrane stability (LMS) at highest
concentrations tested (Table 2). However, lysosomal enzyme
release, phagocytosis, and ROS production reacted more
sensitive with significant alterations measured even at lowest
particle concentrations tested (Canesi et al., 2015; Table 2).
Additionally, NO production was also increased, with the
amount varying depending on the incubation time (Canesi et al.,
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2015). In terms of apoptotic parameters measured, significant
effects could only be measured at highest concentrations applied
(Canesi et al., 2015; Table 2). Balbi et al. (2017) evaluated
the effects induced on the transcription of genes related
to neuroendocrine signaling (serotonin receptor, 5-HTR),
antioxidant defense (CAT, SOD), biotransformation (GST,
ABC transporter p-glycoprotein [ABCB]), biomineralization
(extrapallial protein [EP], carbonic anhydrase [CA]), autophagy,
growth and metabolism (mammalian target of rapamycin
[mTor]), apoptosis (p53), the immune response (Toll-like
receptor I isoform [TLR-i]), shell formation (chitin synthetase
[CS]), and the immune response/intracellular digestion lysozyme
(LYSO). A time-dependent response of genes were reported,
with significant up-regulation of CS and a significant decrease
in LYSO after 24 h and a general down-regulation of all genes
after 48 h, with significant alterations in the transcription of
CS, CA, EP, ABCB, and LYSO (Balbi et al., 2017; Table 2).
Cellular responses of M. galloprovincialis induced by PS- and
PE-fragments were investigated by Avio et al. (2015) by assessing
the levels of tissue biomarkers of immunological alterations
(granolocytes/hyalinocytes ratio, phagocytosis activity, and
LMS in hemocytes), neurotoxic responses (acetylcholinesterase
[AChE] in hemocytes and gills), cellular, and oxidative stress
biomarkers in digestive tissues (acyl-CoA oxidase [AOX],
anti-oxidant defenses [CAT, GST, glutathione reductase,
total glutathione], total oxyradical scavenging capacity
[TOSC], lysosomal latency period [LP], malondialdehyde
[MDA], lipofuscin, and neutral lipids), as well as genotoxic
effects in hemolymph (DNA strand breaks, micronuclei
frequency (MN), and nuclear alterations (NA). Additionally,
transcriptional analyses were conducted for organisms treated
with the PS-particles exclusively (Avio et al., 2015). Among the
immunological responses of hemocytes, there was no significant
change in phagocytosis whereas the granulocytes/hyalinocytes
ratio decreased significantly in mussels exposed to PE-fragments
and LMS decreased significantly in those treated with PS-
fragments (Table 2). Although there were no obvious genotoxic
effects in hemolymph, both the PE- and the PS-fragments
induced neurotoxic effects in gills, including a significant
decrease in AChE (Table 2). Alterations in biomarkers of
cellular and oxidative stress included the significant inhibition of
Se-dependent glutathione peroxidases in mussels exposed to the
PS-fragments, with a similar trend determined for CAT (Table 2).
Overall, the analysis of transcriptional responses identified a
total of 2,143 genes differentially expressed in response to PS
exposure, with 1,062 of those genes being down-regulated and
1,081 being up-regulated (Avio et al., 2015).

O2 consumption
The effects induced by the mechanical hazards of micro- and
nano-sized plastics on oxygen (O2) consumption by marine
organisms were examined in 20% (n = 10) of the included
experiments (Table 2). Alterations in the O2 consumption of
the annelid A. marina treated with PVC-, PLA-, and HDPE-
fragments were analyzed by Green et al. (2016a), reporting
dose-dependent effects with significantly increased respiration
rates at highest concentrations tested (Table 2). As reported by

Watts et al. (2016), O2 consumption rates of C. maenas were
significantly reduced by the highest applied concentration of
plain PS-spheres, whereas there were no significant changes
following exposure to functionalized PS-COOH and PS-NH2

spheres (Watts et al., 2016; Table 2). However, no effects of
plain PS-spheres on O2 consumption were reported for C.
helgolandicus (Cole et al., 2015; Table 2). Additionally, no
significant changes in O2 consumption induced by fragments of
PS, HDPE, and PLA were measured for A. striata and O. edulis
(Green, 2016; Xu et al., 2017; Table 2).

Reproduction
The mechanical hazards affecting reproduction (egg production,
fecundity, fertilization rates, oocyte number, and population
size and growth rate) were assessed in 7 (14%) of the marine
studies (Table 2). Heindler et al. (2017) reported significant
dose-dependent effects of PET-fragments on the reproduction of
P. crassirostris, with population size being more sensitive than
egg production (Table 2). Population size was also investigated
by Snell and Hicks (2011) assessing two generations of the
rotifer B. manjavacas treated with PS-spheres. For these particles,
distinct size-depending effects were observed with significantly
reduced population growth rates for the smallest particles tested
(Table 2). Size-dependent effects of PS-spheres were also found in
T. japonicus, with significant effects on the fecundity of organisms
exposed to larger spheres at lowest concentrations tested (Lee
et al., 2013; Table 2). However, significant effects of PS-spheres
have additionally been reported in terms of fertilization rates
of P. lividus (Martínez-Gómez et al., 2017) and the decline in
numbers of oocytes of C. gigas (Sussarellu et al., 2016; Table 2).

Assimilation
Sussarellu et al. (2016) examined the effects of PS-spheres
on energy budgets of C. gigas, showing absorption efficiency
being significantly higher in exposed than in control oysters
(Table 2). However, PS-fragments did not alter absorption
efficiency of A. striata (Xu et al., 2017). By contrast, the
energy budget of the marine arthropod C. maenas showed
to be rather sensitive toward exposure with PP-fibers, with
a reduction in growth capacity noted at each of the applied
concentrations (Watts et al., 2015). Wright et al. (2013a)
showed a dose-dependent decrease in total available energy
reserves ofA. marina following exposure to PVC-fragments, with
significant reductions at highest concentrations tested, as well as
significantly lowered lipid reserves and comparable trends for
proteins and sugar reserves (Table 2). Based on a conceptual
carbon budget model, significant energy losses were also
reported in the copepod C. helgolandicus treated with PS-spheres
(Cole et al., 2015; Table 2).

Regeneration
Finally, the regeneration potential of P. aibuhitensis after PS-
spheres exposure was investigated by Leung and Chan (2018),
reporting significant decreases in regeneration rates, especially in
worms exposed to the smallest particles (Table 2).
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Chemical Impacts
Leachates

Freshwater benthic fauna
Among the 24 experiments focusing on leachates of micro-
and nanoplastics, a single one (4%) targeted a freshwater
organism (Table 3). Zhao et al. (2017) exposed C. elegans to
PS-spheres in various concentrations, examining the effects
on cellular responses, behavior, and reproduction. However,
dose-dependent effects on each assessed parameter were
reported with significant alterations at the highest concentration
applied (Table 3).

Marine benthic fauna
All of the remaining studies (96%, n = 23) on chemical hazards
posed by leachates of plastics examined marine organisms
(Table 3), including arthropods (75%, n = 18), echinoderms
(13%, n = 3), and molluscs (8%, n = 1; Figure 3A). In 13%
(n = 3) of those studies, effects were examined on leachates of
PS, HDPE, PP, and biodegradable plastics (each 12%, n = 3;
Figure 3B). Leachates of LDPE, PVC, and PET were assessed in
two studies each (8% of the investigations; Figure 3B). PE, PC,
PUR, rubber, and an unknown plastic polymer were investigated
in single studies (4%, n = 1; Figure 3B). The leachates derived
from plastic fragments were assessed in 22 of the 23 studies,
while a single study used spheres (4%; Figure 3C). All of
the studies were conducted in aqueous medium and mainly
assessed mortality (60%, n = 18) and/or development (40%,
n= 12; Table 3).

Mortality
Li H. X. et al. (2016) investigated the impact of various plastic
polymers (HDPE, LDPE, PC, PET, PP, PS, and PVC), applied as

fragments, on the mortality of juvenile A. amphitrite (Table 3).
However, mortality increased in a polymer- and dose-dependent
manner, with distinct effects in barnacles at low concentrations
of HDPE, LDPE, PC, PET, PP, and PVC, while PS induced
significant effects at the highest concentration tested exclusively
(Table 3). Bejgarn et al. (2015) also found polymer-dependent
differences in their examination on the mortality of N. spinipes
induced by leachates of HDPE, LDPE, PET, PP, PS, PUR,
PVC, rubber, biodegradable, and unknown polymers (Table 3).
Additionally, the same authors compared the effects of selected
plastics that had been artificially aged via irradiance with a xenon
lamp (wavelength 300–800 nm, 765W m2) to simulate natural
sunlight (Bejgarn et al., 2015; Table 3). However, acute toxicity
toward N. spinipes was not induced by leachates of 62% of the
plastic materials used (n = 13), while effects were measured in
the remaining 38% (n = 8), before and/or after their irradiation
(Bejgarn et al., 2015; Table 3). Generally, no common trend in
toxicity, as a function of irradiation time, could be observed for
the various polymers (Table 3).

Development
The development of juvenile A. amphitrite, measured as
settlement success, was investigated by Li H. X. et al. (2016)
exposing the organisms to various fragments of HDPE, LDPE,
PC, PET, PP, PS, and PVC. Settlement was dose-dependently
affected for all polymers investigated, being significantly reduced
at the lowest concentrations applied (Table 3). Nobre et al.
(2015) exposed embryos of L. variegatus to leachates of PE-
fragments in a pellet-water interface assay and an elutriate
assay. Anomalous larval development was observed in sea
urchins assayed by either method, together with significant
reductions in the proportions showing normal development

FIGURE 3 | Toxicity assays examining chemical effects by leachates of plastic particles in organisms in (i) freshwater studies, (ii) marine studies, and (iii) total. Data

depict the groups of organisms (taxa) used (A), polymer types (B), and shape of small-scale plastic particles applied (C).
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FIGURE 4 | Toxicity assays examining chemical effects posed by the

interaction of chemicals and plastic particles in marine benthic invertebrates.

Data depict the groups of organisms (taxa) used (A), polymer types (B), shape

of particles applied (C), POPs used as co-contaminant (D), and matrix or route

of exposure (E).

patterns (Table 3). In comparable assays conducted by Gandara
E Silva et al. (2016), P. perna was exposed to beach-collected
pellets and to commercially available virgin PP-fragments.
Exposure to the PP-fragments resulted in malformations or
dead embryos in a dose-dependent manner, with significant
effects at the lowest concentration tested (Table 3). Moreover,
the beach-collected pellets were significantly more toxic than
the PP-fragments in a comparative assay (Table 3). Embryonic
development was also assessed by Martínez-Gómez et al. (2017),
by treating zygotes of P. lividus with leachates of PS-spheres
and HDPE-fragments, with abnormalities in the embryonic
development being recorded for both polymers applied (Table 3).

Interaction With Chemicals

Studies on effects induced by the interaction of micro- and
nanoplastics with pollutants on benthic organisms are scarce.
The eight experiments included in the present review were
conducted with marine organisms exclusively, three (38%)
using annelids and arthropods and two (25%) using molluscs
(Figure 4A). Plastic particles mainly consisted of PS (50%,
n = 4; Figure 4B) but PVC and PE were examined as well
(25% each, n = 2 each). These particles were applied as
fragments and spheres in four studies each (Figure 4C). Among
the chemicals investigated, polycyclic aromatic hydrocarbons
(PAHs) were most frequently tested, followed by polychlorinated
biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs),
pharmaceuticals and personal care products (PCPPs) as well
as nonylphenol ethoxylates (NPEOs; Figure 4D). The reviewed
assays were conducted in aqueous medium or sediment in 70%
of the studies, while exposure via the diet applied was assessed in
two studies only (Figure 4E).

Development
Devriese et al. (2017) examined the developmental alterations
in N. norvegicus after exposure to PE- and PS-spheres cross-
contaminated with PCBs (applied as congeners 28, 52, 101,
118, 138, 153, 180, CB29, CB112, and CB140). After 3 weeks
of exposure, no significant effects on the wet weight (ww),
carapace length, and condition of exposed lobsters could be
found (Table 4). Species of theMytilus complex were treated with
PS and the PAH fluoranthene (FLU) over 7 days, followed by 7
days of depuration (Paul-Pont et al., 2016). At day 7, a significant
increase in developmental effects, seen as histopathological
lesions/abnormalities, was demonstrated in mussels exposed to
microplastic particles and FLU, alone or in combination (Paul-
Pont et al., 2016; Table 4). After 7 days of depuration, the
observed effects were still significant for the combined exposure
treatments (Paul-Pont et al., 2016; Table 4).

Cellular response
The cellular responses of the lugworm A. marina to sediment
co-contamination with nonylphenol (NPEO), Triclosan (PCPP),
phenanthrene (PAH), and PBDE-47 (PBDE) combined with
PVC-fragments were studied by Browne et al. (2013; Table 4).
The phagocytic activity of A. marina decreased significantly
in treatments consisting of sediment, PVC and NPEO, but
also in those in which the sediments were spiked with NPEO
alone (Browne et al., 2013). None of the additionally examined
POPs induced significant effects on phagocytic activity (Table 4).
An assay of the coelomic fluid of the lugworm showed
that the ingestion of PVC-contaminated sediment resulted in
a >30% lower oxidative stress response, while exposure to
pollutants and additives through desorption from PVC had
no effect (Table 4). Gomiero et al. (2018) investigated cellular
responses of H. diversicolor exposed to PVC-fragments in
combination with the PAH benzo(a)pyrene (B(a)P) in sediments
over 10 and 28 days. Phagocytic activity was significantly
reduced in organisms exposed for 28 days to B(a)P and both
PVC concentrations, and for 10 days to B(a)P and highest
concentrations of fragments (Table 4). Although B(a)P-exposure
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alone reduced phagocytic activity, the effects were significant
only in combination with the plastics (Gomiero et al., 2018).
In addition, mitochondrial activity and LMS were significantly
decreased and oxyradical production significantly increased in
H. diversicolor after combined exposure (Table 4). Again, the
effect patterns were similar in organisms exposed to B(a)P alone,
but combined contamination greatly intensified the observed
alterations (Gomiero et al., 2018). In that same study, the ability
of plastic particles to increase dispersion and the effects of
genotoxic pollutants, such as B(a)P, were investigated by scoring
the increments of micronuclei formation and DNA strand breaks
in the coelomocytes of H. diversicolor. The results supported
those obtained for mitochondrial activity, LMS, and oxyradical
production, with co-contamination enhancing the effects of POP
alone (Gomiero et al., 2018). An investigation of the effects on
the lipofuscin content and CAT activity ofH. diversicolor likewise
showed enhancement by co-contamination, with significantly
higher values in organisms treated with B(a)P and PVC than in
controls and in worms exposed to sediments spiked only with
B(a)P (Table 4).

Paul-Pont et al. (2016) focused on hemocyte parameters,
enzyme activities and gene expression in M. edulis and
M. galloprovincialis exposed to PS-spheres and FLU. Compared
to organisms treated with FLU alone, significant decreases
in phagocytic activity and ROS production after combined
exposure were observed, together with decreased numbers
of dead hemocytes. By contrast, hemocyte and granulocyte
concentrations did not differ between treatments (Table 4).
CAT activity and LPO were also significantly reduced under
combined exposure vs. FLU alone (Table 4). Gene expression
was also altered after combined vs. single exposure, evidenced by
significantly higher cat levels in gills and the very high levels of
pk and sodmRNA (Table 4). After depuration, single exposure to
FLU induced a reduction in cat mRNA, and combined exposure
a significant increase (Table 4). The expression of sod, gpx, idp,
pk, and amylase increased significantly under FLU exposure, but
not in organisms treated with both PS and FLU (Table 4).

Mortality
An effect of combined exposure on mortality was determined
in three studies (Table 4). Browne et al. (2013) reported the
increased mortality of A. marina exposed to a combination of
PVC-fragments and PCPP, but not to co-contamination with
NPEO, PAH, or PBDE-47 (Table 4). Besseling et al. (2012) and
Gomiero et al. (2018) investigated the effects on the mortality
of A. marina or H. diversicolor in treatments consisting of PS-
spheres combined with PCBs and PVC-fragments with B(a)P,
respectively, with no alterations being observed under any of the
conditions tested (Table 4).

Behavior
Behavioral alterations, measured as effects on feeding activity,
in the lugworm A. marina were assessed by Besseling et al.
(2012) and by Browne et al. (2013) with contrary results obtained:
while there were no alterations in feeding activity following
combined exposure to PS-fragments and PCBs or to PVC-
fragments and NPEO, PAH, and PBDE-47, treatments consisting

of PVC-particles combined with PCPP reduced feeding activity
significantly (Table 4).

Accumulation
POP accumulation and the consequences of POP co-
contamination with plastic particles were examined in every
study included in this part of the review (Table 4). Browne
et al. (2013) reported less NPEO, PAH, PCPP, and PBDE-47
accumulation in A. marina exposed to the chemicals together
with PVC-fragments. These results were supported by those of
Chua et al. (2014) in their study of A. compressa. The authors
found less accumulation of PBDEs when in combination with
PE-fragments. However, higher-brominated PBDEs accumulated
at higher rates than did lower-brominated congeners (Table 4).
A polymer-dependent effect on POP accumulation was shown
by Devriese et al. (2017), who reported significantly increased
body concentrations of PCBs in the tail tissues of N. norvegicus
exposed to PE-spheres. Co-exposure with PS-spheres, however,
did not have any effects on PCB accumulation, independent of
the particle size tested (Table 4). By contrast, Besseling et al.
(2012) reported a significant, but non-dose-dependent increase
in PCB accumulation in A. marina exposed to sediments
additionally spiked with PS-fragments (Table 4). Effects of co-
contamination on accumulation were also reported for PAH and
PVC-fragments, as Gomiero et al. (2018) showed a significant
increase in accumulation of B(a)P in the body of H. diversicolor
under combined exposure (Table 4). In addition, Paul-Pont et al.
(2016) reported time-dependent effects on the accumulation of
FLU induced by PS-spheres forM. edulis andM. galloprovincialis
(Table 4). While no effects on accumulation were found after
7 days of exposure, body concentrations in both mussels were
significantly higher after depuration (Table 4).

CONCLUSION AND GAP-ANALYSIS

The present review is a comprehensive analysis of studies
investigating the (eco) toxicological effects of micro- and
nanoplastics on benthic invertebrates inmarine and in freshwater
ecosystems. However, 80% (n= 39) of the respective publications
analyzed referred to marine organisms and only 20% (n = 10)
to freshwater organisms. Moreover, the toxic effects induced
by leachates of plastic debris on freshwater organisms were
analyzed in a single study (Zhao et al., 2017; Table 3), whereas
the interactive hazards posed by micro- and nanoplastics and
POPs in freshwaters have yet to be addressed at all (Table 4).Most
of the benthic organisms assessed belonged to the macrofauna,
investigated in 71% of freshwater studies and 99% of marine
studies, with arthropods and molluscs as the most widely
used organisms (72% of all studies). By contrast, despite their
indisputable ecological relevance, organisms belonging to the
micro- or meiofauna have been widely neglected. However, these
groups of organisms should be of particular concern regarding
nano- and micro-sized plastics, especially due to their key
functions in aquatic ecosystems, and necessarily be included in
further research.

Among the polymers used in the various assays, PS was the
most commonly used: 42 vs. <10% each for other polymers,
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including PP, HDPE, and PVC (Figures 2B, 3B, 4B). Overall,
more polymer types were used in studies investigating the
hazards posed by plastics on marine than on freshwater
organisms, and only PS was used in the leachate study in
freshwater (Figure 3B). Even though PS is one of the most
commonly found polymers in nature (e.g., Barnes et al., 2009;
Browne et al., 2010; Klein et al., 2015), other types of plastics
present in the environment should also be comprehensively
assessed, especially regarding the specific gravity of different
plastic classes (e.g., Duis and Coors, 2016; Auta et al., 2017)
and the associated individual risk to pose hazards on benthic
organisms. Additionally, different polymers vary in their POP-
sorption capacity, with consistently higher concentrations of
PCBs and PAHs absorbing to HDPE, LDPE, and PP than to
PET and PVC, while PAH sorbs more to PE than to PP or
PVC (Rochman et al., 2013; Bakir et al., 2014). Hence, the
effects of both the polymer and the associated contaminants have
to be considered when assessing the potential risks of small-
scale plastics in aquatic ecosystems. Effects of weathering or
aging have been shown to affect the superficial characteristics
of plastic particles and should also be taken into account
for assessing potential risks of plastics under environmental
relevant conditions. In studies assessing effects posed by non-
functionalized vs. functionalized particles comparatively, with
coated particles serving as surrogates for naturally altered plastics
(Della Torre et al., 2014; Watts et al., 2016), differences in effects
were reported. However, these studies investigated physical
hazards posed by small-sized plastic particles exclusively, while
chemical effects induced might be even more pronounced due to
altered surface characteristics.

Regarding the various shapes of plastic particles used to
investigate the environmental burden posed, fragments were
the most frequent shape (60% of overall studies), whereas
spheres still accounted for around 36% of the analyzed studies,
and fibers for 5% only. However, particles of primary sources,
mainly manufactured as spheres, are of minor relevance in
nature and rather irregularly-shaped particles, resulting from the
fragmentation of larger plastic items and of materials containing
synthetic polymers, are much more prevalent (e.g., Duis and
Coors, 2016). By this review, most obvious imbalances could
be revealed regarding chemical effects posed by small-scale
plastic particles on benthic freshwater organisms again, with
spheres being investigated exclusively in terms of potential
impacts induced by leachates. Regarding the interaction of
chemicals withmicro- and/or nanoplastics, the number of studies
examining effects of co-contaminations is not representing
environmental relevant circumstances, by using fragments and
spheres equally (Figure 4C).

Furthermore, the exposure of benthic organisms to plastics
in nature is doubtless dominated by particles in the sediments,
both in marine and in freshwater ecosystems (Moore, 2008;
Wright et al., 2013b; Galloway et al., 2017); however, in the vast
majority of the reviewed studies exposure was via the aqueous
phase (Figures 2D, 4E; Table 3). Studies investigating the effects
of leachates on benthic organisms were conducted in aqueous
medium exclusively (Table 3), while particles were applied in
more relevant matrices, sediment or food, in terms of studies

on physical hazards and the interaction with POPs (Figures 2D,
4E). However, the scope of further scientific research should
be broadened to include investigations under realistic exposure
scenarios, mainly by using the ecologically most relevant
exposure matrix for the particular organism group tested.

Even though the reviewed studies generally investigated effects
of particles in a huge size range, the vast majority of studies
applied microplastics, defined as particles ranging between
0.1µm and 5mm respectively (e.g., Thompson et al., 2004;
Moore, 2008; Tables 1–4). However, in those studies assessing
effects of nano- and micro-sized particles comparatively, distinct
size-dependent effects were reported with increased impacts
of nanoplastics, both in marine studies (Snell and Hicks,
2011; Lee et al., 2013; Jeong et al., 2017) as well as in
experiments concerning freshwater organisms (Jeong et al.,
2016; Lei et al., 2018). Irrespectively of the recent technical
obstacles concerning the detection of nano-sized particles and
the resulting uncertainties about natural concentrations, a
subsequent degradation of plastic debris into nano-sized particles
is widely accepted (e.g., Andrady, 2011; Lambert et al., 2013;
Lambert and Wagner, 2016). By this, distinct research gaps
concerning effects of nanoplastics on benthic organisms could
be revealed.

The current lack of methodological standardization and
harmonization greatly hampers inter-study comparisons, as
already noted by Van Cauwenberghe et al. (2015). Generally,
small-scale plastics have been tested in concentrations several
orders of magnitude higher than current known environmental
concentrations. While such approaches may be useful in
identifying the general hazards posed by plastic particles,
little information is provided on the actual impacts on
benthic organisms. However, due to current detection limits
for small-scale plastic particles, concrete measures of realistic
concentrations are rarely available for particles >10µm and not
available for smaller particles (<10µm).

Even though a general comparison between the various
assessed parameters in terms of their susceptibility toward
nano- and microplastic exposure is difficult due to varying
experimental conditions, sub-lethal parameters indicated to be
more sensitive than mortality (Tables 1–4). This should be taken
into account for upcoming research on this highly relevant
topic. Furthermore, single-species tests were the preferred
investigation design and the exposures were mostly short
or of intermediate duration. However, long-term exposure
and interspecific interactions characterize natural conditions;
accordingly, the possible effects on the food chain and on
the reproductive system of exposed organisms should also
be investigated. Such studies are crucial due to the potential
impact of small-scale plastics on community structure and
population dynamics but also, indirectly, on higher trophic levels.
More realistic model ecosystems and controlled experimental
conditions would enable explorations of the effects of plastics on
whole benthic communities. Extended plastic exposures, even at
the low concentrations currently found in nature, may also lead
to multi-generational effects on populations and communities.

In conclusion, the present review identified several
shortcomings that have limited a comprehensive risk assessment
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of the impact of micro- and nanoplastics, as well as future areas
of research:

- Few studies have focused on the organisms in freshwater
ecosystems, especially chemical effects are widely neglected
so far.

- In both marine and freshwater systems, micro-
and meiobenthic organisms must be more
extensively assessed.

- Greater attention should be devoted to micro- and nano-
sized plastics whose polymer composition, shape, surface
properties, and exposure routes are those characterizing
plastic particles contaminating the natural environment.

- Nano-sized particles should be of concern when assessing
potential effects of plastics.

- Long-term assays of multiple species (e.g., model ecosystems)
should be conducted to examine effects with higher
ecological relevance.

- Standardization of concentrations and exposure conditions
are needed together with quality assessments to obtain more
reliable and comparable data.
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